Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 438
Filter
2.
BMC Genomics ; 25(1): 67, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233751

ABSTRACT

BACKGROUND: Rye (Secale cereale), one of the drought and cold-tolerant crops, is an important component of the Triticae Dumortier family of Gramineae plants. Basic helix-loop-helix (bHLH), an important family of transcription factors, has played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, no systemic analysis of the bHLH transcription factor family has yet been reported in rye. RESULTS: In this study, 220 bHLH genes in S. cereale (ScbHLHs) were identified and named based on the chromosomal location. The evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events in these ScbHLH genes are systematically analyzed. These 220 ScbHLH members are divided into 21 subfamilies and one unclassified gene. Throughout evolution, the subfamilies 5, 9, and 18 may have experienced stronger expansion. The segmental duplications may have contributed significantly to the expansion of the bHLH family. To systematically analyze the evolutionary relationships of the bHLH family in different plants, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. Finally, the gene expression response characteristics of 22 ScbHLH genes in various biological processes and stress responses were analyzed. Some candidate genes, such as ScbHLH11, ScbHLH48, and ScbHLH172, related to tissue developments and environmental stresses were screened. CONCLUSIONS: The results indicate that these ScbHLH genes exhibit characteristic expression in different tissues, grain development stages, and stress treatments. These findings provided a basis for a comprehensive understanding of the bHLH family in rye.


Subject(s)
Genome, Plant , Secale , Secale/genetics , Phylogeny , Basic Helix-Loop-Helix Transcription Factors/chemistry , Transcription Factors/metabolism , Gene Expression Regulation, Plant
3.
J Mol Biol ; 436(3): 168370, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37992889

ABSTRACT

PAS domains are ubiquitous in biology. They perform critically important roles in sensing and transducing a wide variety of environmental signals, and through their ability to bind small-molecule ligands, have emerged as targets for therapeutic intervention. Here, we discuss our current understanding of PAS domain structure and function in the context of basic helix-loop-helix (bHLH)-PAS transcription factors and coactivators. Unlike the bHLH-PAS domains of transcription factors, those of the steroid receptor coactivator (SRC) family are poorly characterized. Recent progress for this family and for the broader bHLH-PAS proteins suggest that these domains are ripe for deeper structural and functional studies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Helix-Loop-Helix Motifs , Receptors, Aryl Hydrocarbon , Basic Helix-Loop-Helix Transcription Factors/chemistry , Receptors, Aryl Hydrocarbon/chemistry , Protein Domains , Humans
4.
BMC Genomics ; 24(1): 780, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102570

ABSTRACT

BACKGROUND: The bHLH transcription factor family is named after the basic helix-loop-helix (bHLH) domain that is a characteristic element of their members. Understanding the function and characteristics of this family is important for the examination of a wide range of functions. As the availability of genome sequences and transcriptome assemblies has increased significantly, the need for automated solutions that provide reliable functional annotations is emphasised. RESULTS: A phylogenetic approach was adapted for the automatic identification and functional annotation of the bHLH transcription factor family. The bHLH_annotator, designed for the automated functional annotation of bHLHs, was implemented in Python3. Sequences of bHLHs described in literature were collected to represent the full diversity of bHLH sequences. Previously described orthologs form the basis for the functional annotation assignment to candidates which are also screened for bHLH-specific motifs. The pipeline was successfully deployed on the two Arabidopsis thaliana accessions Col-0 and Nd-1, the monocot species Dioscorea dumetorum, and a transcriptome assembly of Croton tiglium. Depending on the applied search parameters for the initial candidates in the pipeline, species-specific candidates or members of the bHLH family which experienced domain loss can be identified. CONCLUSIONS: The bHLH_annotator allows a detailed and systematic investigation of the bHLH family in land plant species and classifies candidates based on bHLH-specific characteristics, which distinguishes the pipeline from other established functional annotation tools. This provides the basis for the functional annotation of the bHLH family in land plants and the systematic examination of a wide range of functions regulated by this transcription factor family.


Subject(s)
Arabidopsis , Plants , Phylogeny , Plants/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Transcription Factors/genetics , Helix-Loop-Helix Motifs , Arabidopsis/genetics , Arabidopsis/metabolism
5.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047130

ABSTRACT

Anti-pigmentation peptides have been developed as alternative skin-lightening agents to replace conventional chemicals that have adverse effects on the skin. However, the maximum size of these peptides is often limited by their low skin and cell penetration. To address this issue, we used our intra-dermal delivery technology (IDDT) platform to identify peptides with hypo-pigmenting and high cell-penetrating activity. Using our cell-penetrating peptides (CPPs) from the IDDT platform, we identified RMNE1 and its derivative RMNE3, "DualPep-Shine", which showed levels of α-Melanocyte stimulating hormone (α-MSH)-induced melanin inhibition comparable to the conventional tyrosinase inhibitor, Kojic acid. In addition, DualPep-Shine was delivered into the nucleus and regulated the gene expression levels of melanogenic enzymes by inhibiting the promoter activity of microphthalmia-associated transcription factor-M (MITF-M). Using a 3D human skin model, we found that DualPep-Shine penetrated the lower region of the epidermis and reduced the melanin content in a dose-dependent manner. Furthermore, DualPep-Shine showed high safety with little immunogenicity, indicating its potential as a novel cosmeceutical ingredient and anti-pigmentation therapeutic agent.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cell-Penetrating Peptides , Melanins , Melanocytes , Microphthalmia-Associated Transcription Factor , Nerve Tissue Proteins , Skin Lightening Preparations , Skin Pigmentation , Transcription, Genetic , Melanins/antagonists & inhibitors , Skin Pigmentation/drug effects , Microphthalmia-Associated Transcription Factor/genetics , Transcription, Genetic/drug effects , alpha-MSH/antagonists & inhibitors , alpha-MSH/metabolism , Humans , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Skin Lightening Preparations/chemistry , Skin Lightening Preparations/pharmacology , Melanoma, Experimental , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/pharmacology , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Epidermis/drug effects , Epidermis/metabolism
6.
J Mol Biol ; 435(8): 168033, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36858171

ABSTRACT

The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 µM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Chromatin , Intrinsically Disordered Proteins , Neoplasm Proteins , Nuclear Proteins , Protein-Arginine Deiminase Type 4 , Base Sequence , Chromatin/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Binding , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics
7.
Nucleic Acids Res ; 51(1): 434-448, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36546761

ABSTRACT

Plant-specific TCP transcription factors are key regulators of diverse plant functions. TCP transcription factors have long been annotated as basic helix-loop-helix (bHLH) transcription factors according to remote sequence homology without experimental validation, and their consensus DNA-binding sequences and protein-DNA recognition mechanisms have remained elusive. Here, we report the crystal structures of the class I TCP domain from AtTCP15 and the class II TCP domain from AtTCP10 in complex with different double-stranded DNA (dsDNA). The complex structures reveal that the TCP domain is a distinct DNA-binding motif and the homodimeric TCP domains adopt a unique three-site recognition mode, binding to dsDNA mainly through a central pair of ß-strands formed by the dimer interface and two basic flexible loops from each monomer. The consensus DNA-binding sequence for class I TCPs is a perfectly palindromic 11 bp (GTGGGNCCCAC), whereas that for class II TCPs is a near-palindromic 11 bp (GTGGTCCCCAC). The unique DNA binding mode allows the TCP domains to display broad specificity for a range of DNA sequences even shorter than 11 bp, adding further complexity to the regulatory network of plant TCP transcription factors.


Subject(s)
Arabidopsis Proteins , DNA , Transcription Factors , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA/chemistry , DNA/metabolism , Helix-Loop-Helix Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism
8.
J Bioinform Comput Biol ; 20(4): 2250014, 2022 08.
Article in English | MEDLINE | ID: mdl-35881019

ABSTRACT

The basic helix loop helix (bHLH) superfamily is a large and diverse protein family that plays a role in various vital functions in nearly all animals and plants. The bHLH proteins form one of the largest families of transcription factors found in plants that act as homo- or heterodimers to regulate the expression of their target genes. The bHLH transcription factor is involved in many aspects of plant development and metabolism, including photomorphogenesis, light signal transduction, secondary metabolism, and stress response. The amount of molecular data has increased dramatically with the development of high-throughput techniques and wide use of bioinformatics techniques. The most efficient way to use this information is to store and analyze the data in a well-organized manner. In this study, all members of the bHLH superfamily in the plant kingdom were used to develop and implement a relational database. We have created a database called bHLHDB (www.bhlhdb.org) for the bHLH family members on which queries can be conducted based on the family or sequences information. The Hidden Markov Model (HMM), which is frequently used by researchers for the analysis of sequences, and the BLAST query were integrated into the database. In addition, the deep learning model was developed to predict the type of TF with only the protein sequence quickly, efficiently, and with 97.54% accuracy and 97.76% precision. We created a unique and next-generation database for bHLH transcription factors and made this database available to the world of science. We believe that the database will be a valuable tool in future studies of the bHLH family.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Deep Learning , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phylogeny , Plants , Transcription Factors/genetics
9.
Biochem Soc Trans ; 50(3): 1227-1243, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35695677

ABSTRACT

Proteins that contain basic helix-loop-helix (bHLH) and Per-Arnt-Sim motifs (PAS) function as transcription factors. bHLH-PAS proteins exhibit essential and diverse functions throughout the body, from cell specification and differentiation in embryonic development to the proper function of organs like the brain and liver in adulthood. bHLH-PAS proteins are divided into two classes, which form heterodimers to regulate transcription. Class I bHLH-PAS proteins are typically activated in response to specific stimuli, while class II proteins are expressed more ubiquitously. Here, we discuss the general structure and functions of bHLH-PAS proteins throughout the animal kingdom, including family members that do not fit neatly into the class I-class II organization. We review heterodimerization between class I and class II bHLH-PAS proteins, binding partner selectivity and functional redundancy. Finally, we discuss the evolution of bHLH-PAS proteins, and why a class I protein essential for cardiovascular development in vertebrates like chicken and fish is absent from mammals.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator , Basic Helix-Loop-Helix Transcription Factors , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dimerization , Mammals/metabolism , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/metabolism
10.
Sci Rep ; 12(1): 2341, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149717

ABSTRACT

The growth of glioblastoma (GBM), one of the deadliest adult cancers, is fuelled by a subpopulation of stem/progenitor cells, which are thought to be the source of resistance and relapse after treatment. Re-engagement of a latent capacity of these cells to re-enter a trajectory resulting in cell differentiation is a potential new therapeutic approach for this devastating disease. ASCL1, a proneural transcription factor, plays a key role in normal brain development and is also expressed in a subset of GBM cells, but fails to engage a full differentiation programme in this context. Here, we investigated the barriers to ASCL1-driven differentiation in GBM stem cells. We see that ASCL1 is highly phosphorylated in GBM stem cells where its expression is compatible with cell proliferation. However, overexpression of a form of ASCL1 that cannot be phosphorylated on Serine-Proline sites drives GBM cells down a neuronal lineage and out of cell cycle more efficiently than its wild-type counterpart, an effect further enhanced by deletion of the inhibitor of differentiation ID2, indicating mechanisms to reverse the block to GBM cell differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/physiopathology , Glioblastoma/metabolism , Glioblastoma/physiopathology , Inhibitor of Differentiation Protein 2/genetics , Neoplastic Stem Cells/metabolism , Amino Acid Motifs , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain Neoplasms/genetics , Cell Cycle , Cell Differentiation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Inhibitor of Differentiation Protein 2/metabolism , Neoplastic Stem Cells/cytology , Phosphorylation
11.
J Cell Physiol ; 237(4): 2211-2219, 2022 04.
Article in English | MEDLINE | ID: mdl-35102545

ABSTRACT

Hypoxia-inducible factor 2α (HIF2α) plays a pivotal role in breast tumor growth and metastasis. However, the regulatory mechanisms of HIF2α protein stability remain poorly understood. The precise role of the deubiquitinase (DUB) ubiquitin-specific peptidase 5 (USP5) in breast cancer and the underlying mechanism remains largely unknown. Here, we identified USP5 as a novel DUB for HIF2α. Physically, USP5 interacts with HIF2α and protects HIF2α from ubiquitin-proteasome degradation, thereby promoting the transcription of HIF2α target genes, such as SLC2A1, PLOD2, P4HA1, and VEGFA. USP5 ablation impairs breast cancer cells proliferation, colony formation, migration, and invasion. Moreover, USP5 is highly expressed in breast cancer, and the protein levels of USP5 are positively correlated with HIF2α protein levels in human breast cancer tissues. Importantly, high levels of USP5 leads to poor clinical outcome in patients with breast cancer. Collectively, USP5 stabilizes HIF2α through its DUB activity and provides a potential therapeutic target for breast cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms , Endopeptidases/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Humans , Proteolysis , Ubiquitin/metabolism
12.
Chem Biol Interact ; 355: 109845, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35123993

ABSTRACT

Although it has been well recognized that benzene exposure can cause hematopoietic disorders such as aplastic anemia and leukemia, the underlying molecular mechanism remains to be fully understood. Emerging evidence indicated that aryl hydrocarbon receptor (AhR) plays important roles in hematopoietic and immune systems. This study investigated the activation of aryl hydrocarbon receptor (AhR) by hydroquinone (HQ) and its role in HQ-induced DNA damage and apoptosis in cultured human lymphocytes (JHP cells). We also investigated the effect of ROS on AhR activation and functions in JHP cells exposed to HQ with and without regulator including N-acetyl-l-cysteine (NAC), a potent antioxidant, and tert-butylhydroquinone (TBHQ), a Nrf2 activator. Results showed that HQ can cause oxidative stress, DNA damage and apoptosis. Pretreatment of an AhR antagonist (CH223191) can significantly increase the cell survival and mitigate HQ-induced toxicities such as DNA damage and apoptosis. We found that HQ can obviously increase expressions of total protein of AhR and prompt nuclear translocation compared to the control group. Interestingly, NAC can block HQ-induced AhR activation and DNA damage and apoptosis. Conclusively, our results indicated that HQ toxicity is mediated by AhR which is in turn regulated by ROS generated by HQ. The interaction between AhR and ROS drive and amplify the hematopoietic toxicity of HQ. This study provided new insights of mechanism and potential targets for the prevention and treatment to benzene-induced hematopoietic toxicity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hydroquinones/pharmacology , Ligands , Oxidative Stress/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Acetylcysteine/pharmacology , Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Benzene/toxicity , Cell Line , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , DNA Damage/drug effects , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/genetics
13.
Hum Genet ; 141(2): 295-304, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35066646

ABSTRACT

Metabolism has a role in determining the time of pubertal development and fertility. Nonetheless, molecular/cellular pathways linking metabolism/body weight to puberty/reproduction are unknown. The KNDy (Kisspeptin/Neurokinin B/Dynorphin) neurons in the arcuate nucleus of the hypothalamus constitute the GnRH (gonadotropin-releasing hormone) pulse generator. We previously created a mouse model with a whole-body targeted deletion of nescient helix-loop-helix 2 (Nhlh2; N2KO), a class II member of the basic helix-loop-helix family of transcription factors. As this mouse model features pubertal failure and late-onset obesity, we wanted to study whether NHLH2 represents a candidate molecule to link metabolism and puberty in the hypothalamus. Exome sequencing of a large Idiopathic Hypogonadotropic Hypogonadism cohort revealed obese patients with rare sequence variants in NHLH2, which were characterized by in-silico protein analysis, chromatin immunoprecipitation, and luciferase reporter assays. In vitro heterologous expression studies demonstrated that the variant p.R79C impairs Nhlh2 binding to the Mc4r promoter. Furthermore, p.R79C and other variants show impaired transactivation of the human KISS1 promoter. These are the first inactivating human variants that support NHLH2's critical role in human puberty and body weight control. Failure to carry out this function results in the absence of pubertal development and late-onset obesity in humans.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypogonadism/genetics , Obesity/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Basic Helix-Loop-Helix Transcription Factors/chemistry , Female , Genetic Variation , Humans , Hypogonadism/etiology , Hypogonadism/metabolism , Kisspeptins/genetics , Male , Metabolic Networks and Pathways/genetics , Mice , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Obesity/etiology , Obesity/metabolism , Pedigree , Promoter Regions, Genetic , Protein Conformation , Transcriptional Activation , Young Adult
14.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948089

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates a wide range of biological and toxicological effects by binding to specific ligands. AhR ligands exist in various internal and external ecological systems, such as in a wide variety of hydrophobic environmental contaminants and naturally occurring chemicals. Most of these ligands have shown differential responses among different species. Understanding the differences and their mechanisms helps in designing better experimental animal models, improves our understanding of the environmental toxicants related to AhR, and helps to screen and develop new drugs. This review systematically discusses the species differences in AhR activation effects and their modes of action. We focus on the species differences following AhR activation from two aspects: (1) the molecular configuration and activation of AhR and (2) the contrast of cis-acting elements corresponding to AhR. The variations in the responses seen in humans and other species following the activation of the AhR signaling pathway can be attributed to both factors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Humans , Ligands , Receptors, Aryl Hydrocarbon/chemistry , Sequence Alignment , Species Specificity
15.
Int J Mol Sci ; 22(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34884664

ABSTRACT

The basic helix-loop-helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell's fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dimerization , Protein Multimerization , Animals , Basic Helix-Loop-Helix Transcription Factors/classification , Humans , Models, Chemical , Protein Structure, Quaternary
16.
Biomolecules ; 11(10)2021 10 03.
Article in English | MEDLINE | ID: mdl-34680086

ABSTRACT

Intrinsically disordered proteins (IDPs) are emerging as attractive drug targets by virtue of their physiological ubiquity and their prevalence in various diseases, including cancer. NUPR1 is an IDP that localizes throughout the whole cell, and is involved in the development and progression of several tumors. We have previously repurposed trifluoperazine (TFP) as a drug targeting NUPR1 and, by using a ligand-based approach, designed the drug ZZW-115 starting from the TFP scaffold. Such derivative compound hinders the development of pancreatic ductal adenocarcinoma (PDAC) in mice, by hampering nuclear translocation of NUPR1. Aiming to further improve the activity of ZZW-115, here we have used an indirect drug design approach to modify its chemical features, by changing the substituent attached to the piperazine ring. As a result, we have synthesized a series of compounds based on the same chemical scaffold. Isothermal titration calorimetry (ITC) showed that, with the exception of the compound preserving the same chemical moiety at the end of the alkyl chain as ZZW-115, an increase of the length by a single methylene group (i.e., ethyl to propyl) significantly decreased the affinity towards NUPR1 measured in vitro, whereas maintaining the same length of the alkyl chain and adding heterocycles favored the binding affinity. However, small improvements of the compound affinity towards NUPR1, as measured by ITC, did not result in a corresponding improvement in their inhibitory properties and in cellulo functions, as proved by measuring three different biological effects: hindrance of the nuclear translocation of the protein, sensitization of cells against DNA damage mediated by NUPR1, and prevention of cancer cell growth. Our findings suggest that a delicate compromise between favoring ligand affinity and controlling protein function may be required to successfully design drugs against NUPR1, and likely other IDPs.


Subject(s)
Adenocarcinoma/drug therapy , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Carcinoma, Pancreatic Ductal/drug therapy , Intrinsically Disordered Proteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Piperazines/chemistry , Thiazines/chemistry , Adenocarcinoma/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Calorimetry , Humans , Intrinsically Disordered Proteins/genetics , Ligands , Mice , Neoplasm Proteins/chemistry , Piperazines/chemical synthesis , Piperazines/pharmacology , Thiazines/chemical synthesis , Thiazines/pharmacology , Trifluoperazine/chemistry , Trifluoperazine/pharmacology
17.
Eur J Pharmacol ; 912: 174583, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34678238

ABSTRACT

Anemia is a common feature and complication of chronic kidney disease (CKD). Erythropoiesis-stimulating agents (ESAs) and recombinant human erythropoietin have been used widely in renal anemia treatment. Recently, hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PHIs) that may improve the treatment of renal anemia patients were launched. Previous studies indicated that HIF-PHIs may decrease hepcidin levels and modulate iron metabolism, thereby increasing total iron-binding capacity and reducing the need for iron supplementation. Furthermore, HIF-PHIs can reduce inflammation and oxidative stress in CKD. Recombinant erythropoietin has become a routine treatment for patients with CKD and end-stage renal disease with relatively few adverse effects. However, higher doses of recombinant erythropoietin have been demonstrated to be an independent predictor of mortality in patients under hemodialysis. Phase III clinical trials of HIF-PHIs in patients with anemia and dialysis-dependent CKD have shown their efficacy and safety in both non-dialysis and dialysis CKD patients. However, HIFα binds to specific hypoxia-response elements in the vascular endothelial growth factor or retinoic acid-related orphan receptor gamma t (RORγt) promoter, which may be involved in the progression of cancer, psoriasis, and rheumatoid arthritis. In this paper, we have summarized the mechanism, clinical application, and clinical trials of HIF-PHIs in the treatment of renal anemia and aimed to provide an overview of the new drugs in clinical practice, as well as reconsider the advantages and disadvantages of HIF-PHIs and ESAs. Presently, there are not enough clinical studies examining the effects of long-term administration of HIF-PHIs. Therefore, further studies will be needed.


Subject(s)
Anemia/drug therapy , Anemia/metabolism , Enzyme Inhibitors/pharmacology , Hematinics/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Anemia/etiology , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiovascular Diseases/chemically induced , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use , Erythropoietin/adverse effects , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Hematinics/adverse effects , Hematinics/therapeutic use , Humans , Renal Insufficiency, Chronic/complications
18.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502060

ABSTRACT

The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA's shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Humans , Protein Binding , Transcriptional Activation
19.
Sci Rep ; 11(1): 18194, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521881

ABSTRACT

The human aryl hydrocarbon receptor (AHR) is predominantly located in the cytoplasm, while activation depends on its nuclear translocation. Binding to endogenous or xenobiotic ligands terminates the basal nucleo-cytoplasmic shuttling and stabilizes an exclusive nuclear population. The precise mechanisms that facilitate such stable nuclear accumulation remain to be clarified as essential step in the activation cascade. In this study, we have tested whether the sustained nuclear compartmentalization of ligand-bound or basal AHR might further require heterodimerization with the AHR-nuclear translocator (ARNT) and binding to the cognate XRE-motif. Mutagenesis of the DNA-binding motif or of selected individual residues in the ARNT-binding motif did not lead to any variation in AHR's nucleo-cytoplasmic distribution. In response to ligands, all mutants were retained in the nucleus demonstrating that the stable compartmentalization of activated AHR in the nucleus is neither dependent on interactions with DNA, nor ARNT. Knocking down the ARNT gene using small interfering RNA confirmed that ARNT does not play any role in the intracellular trafficking of AHR.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , DNA/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Active Transport, Cell Nucleus , Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry , Basic Helix-Loop-Helix Transcription Factors/chemistry , Binding Sites , Hep G2 Cells , Humans , MCF-7 Cells , Protein Binding , Protein Multimerization , Receptors, Aryl Hydrocarbon/chemistry
20.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1257-1265, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34415290

ABSTRACT

NPAS2, a circadian rhythm gene encoding the neuronal PAS domain protein 2 (NPAS2), has received widespread attention because of its complex functions in cells and diverse roles in disease progression, especially tumorigenesis. NPAS2 binds with DNA at E-box sequences and forms heterodimers with another circadian protein, brain and muscle ARNT-like protein 1 (BMAL1). Nucleotide variations of the NPAS2 gene have been shown to influence the overall survival and risk of death of cancer patients, and differential expression of NPAS2 has been linked to patient outcomes in breast cancer, lung cancer, non-Hodgkin's lymphoma, and other diseases. Here, we review the latest advances in our understanding of NPAS2 with the aim of drawing attention to its potential clinical applications and prospects.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Circadian Rhythm/physiology , Nerve Tissue Proteins/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Disease/genetics , Gene Expression Regulation , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...